- Up to 20 W switching
- Stacking on **0.2 Inches** pitch
- Highest quality instrumentation grade switches
- Inter-terminal capacitances are a fraction of that for standard SIL relays
- 1 Form A or 1 Form A (Coaxial) configurations
- Pin compatible with standard 0.2 Inch SIL relays
- Optional internal mu-metal magnetic screen
- Optional internal coaxial electrostatic screen
- Insulation resistance >10<sup>12</sup>Ω
- Suitable for wide bandwidth A.T.E. switching matrices and attenuator switching
- Additional build options are available
- Many benefits compared to industry standard relays (see last page)



The Pickering Series 103 is a range of Single-in-Line reed relays intended for such applications as wide bandwidth A.T.E. switching matrices, attenuator switching or any other applications where exceptionally low levels of inter-terminal capacitances are required, for example, when carrying fast rise time pulses. A version with an internal co-axial electrostatic screen is available which is ideal for applications where capacitively coupled noise from switch to coil connections is undesirable. The co-axial device has a characteristic impedance of  $50 \Omega$  and is also suitable for high frequency applications up to 2 GHz.

The range consists of two basic types, the first achieves ultra low capacitance levels of typically 0.1 pF from each switch connection to the coil and typically 0.08 pF across the open switch contacts, by virtue of an internal coaxial electrostatic screen or guard connection. Where it is not possible to drive a guard, the second type has inherently low capacitance figures of typically 0.4 pF from each switch connection to the coil and typically 0.1 pF across the open switch contacts. These figures for the unguarded version are around one quarter of those for standard SIL devices. An internal mu-metal magnetic screen is an option in both of these types.

Two types of Form A (energize to make) switches are available, a general purpose switch (switch no.1) and a vacuum sputtered ruthenium switch (switch no.2) which is ideal for very low level or "cold" switching applications.

#### **Switch Ratings**

| 1 Form A (energize to make) | 1 Form A co-axial (energize to make) |  |  |  |  |
|-----------------------------|--------------------------------------|--|--|--|--|
| Up to 20 W at 1A            | Up to 20 W at 1A (50 Ω)              |  |  |  |  |

#### Series 103 switch ratings - contact ratings for each switch type

| Switch<br>No | Switch<br>form | Power rating | Max.<br>switch<br>current | Max.<br>carry<br>current | Max.<br>switching<br>volts | Life<br>expectancy<br>ops typical<br>(see Note <sup>1</sup> ) | Operate time inc bounce (max) | Release<br>time | Special<br>features |
|--------------|----------------|--------------|---------------------------|--------------------------|----------------------------|---------------------------------------------------------------|-------------------------------|-----------------|---------------------|
| 1            | А              | 20 W (*15 W) | 1.0A                      | 1.2 A                    | 200                        | 10 <sup>9</sup>                                               | 0.5 ms                        | 0.2 ms          | General purpose     |
| 2            | А              | 10 W         | 0.5 A                     | 1.2 A                    | 200                        | 108                                                           | 0.5 ms                        | 0.2 ms          | Low level           |

Switch no.2 is particularly good for switching low currents and/or voltages. It is the ideal switch for A.T.E. systems where cold switching techniques are often used. Where higher power levels are involved, switch no.1 is more suitable.

#### Note1: Life Expectancy

The life of a reed relay depends upon the switch load and end of life criteria. For example, for an 'end of life' contact resistance specification of  $1\Omega$ , switching low loads (10 V at 10 mA resistive) or when 'cold' switching, typical life is approx  $1 \times 10^9$  ops. At the maximum load (resistive), typical life is  $1 \times 10^7$  ops. In the event of abusive conditions, e.g. high currents due to capacitive inrushes, this figure reduces considerably. Pickering will be pleased to perform life testing with any particular load condition.

### **Operating Voltages**

| Coil voltage - nominal | Must operate voltage - maximum at 25 °C | Must release voltage - minimum at 25°C |
|------------------------|-----------------------------------------|----------------------------------------|
| 3 V                    | 2.25 V                                  | 0.3 V                                  |
| 5 V                    | 3.75 V                                  | 0.5 V                                  |
| 12 V                   | 9 V                                     | 1.2 V                                  |

## **Environmental Specification/Mechanical Characteristics**

In the table below, the upper temperature limit can be extended to +125 °C if the coil drive voltage is increased to accommodate the resistance/temperature coefficient of the copper coil winding. This is approximately 0.4% per °C. This means that at 125 °C the coil drive voltage will need to be increased by approximately 40 x 0.4 =16% to maintain the required magnetic drive level. Please contact sales@pickeringrelay.com for assistance.

| Operating Temperature Range                        | -20 °C to +85 °C  |
|----------------------------------------------------|-------------------|
| Storage Temperature Range                          | -35 °C to +100 °C |
| Shock Resistance                                   | 50 g              |
| Vibration Resistance (10 - 2000 Hz)                | 20 g              |
| Soldering Temperature (max) (10 s max)             | 270 °C            |
| Washability (Proper drying process is recommended) | Fully Sealed      |

## Washing Guidelines

Pickering do not make any specific recommendations on washing reed relays, due to the large number of factors in cleaning processes, however we do have suggestions on best practices. Click here for more information.



## Coil data and type numbers

| Device Type                 | Swi  | tch  | Type Number     | Coil<br>(V) | Coil<br>resistance | Max.<br>contact<br>resistance | Insulation<br>resistance<br>(minimum at<br>25°C)<br>(see Note <sup>4</sup> ) |                    | Capaci<br>(typio<br>(see N               | cal)                             |
|-----------------------------|------|------|-----------------|-------------|--------------------|-------------------------------|------------------------------------------------------------------------------|--------------------|------------------------------------------|----------------------------------|
|                             | Form | Туре |                 | (0)         | resistance         | (initial)                     | Switch<br>to coil                                                            | Across<br>switch   | Closed<br>switch<br>to coil<br>(C1 & C2) | Across<br>open<br>switch<br>(C3) |
| No magnetic screen or guard |      |      | ,               |             |                    |                               |                                                                              |                    |                                          |                                  |
| screen (*Note               | А    | 1    | 103-1-A-5/1D *  | 5           | 150 Ω              | 0.15 Ω                        | 10 <sup>12</sup> Ω                                                           | 10 <sup>12</sup> Ω | 0.4 pF                                   | 0.13 pF                          |
| 15 W for 5 V coil)          | А    | 2    | 103-1-A-5/2D    | 5           | 150 Ω              | 0.12 Ω                        |                                                                              |                    |                                          | 0.10 pF                          |
| Package Type 1              |      |      |                 |             |                    |                               |                                                                              |                    |                                          |                                  |
| Magnetic screen             |      |      |                 |             |                    |                               |                                                                              |                    | 0.45 pF                                  |                                  |
| only (*Note                 | А    | 1    | 103M-1-A-5/1D * | 5           | 150 Ω              | 0.15 Ω                        | 10 <sup>12</sup> Ω                                                           | 10 <sup>12</sup> Ω |                                          | 0.23 pF                          |
| 15 W for 5 V coil)          | А    | 2    | 103M-1-A-5/2D   | 5           | 150 Ω              | 0.12 Ω                        | 10 12                                                                        | 10'211             |                                          | 0.20 pF                          |
| Package Type 1              |      |      |                 |             |                    |                               |                                                                              |                    |                                          |                                  |
|                             | А    | 2    | 103G-1-A-3/2D   | 3           | 300 Ω              | 0.12 Ω                        |                                                                              |                    |                                          | 0.08 pF                          |
| Guard screen only (*Note    | А    | 1    | 103G-1-A-5/1D * | 5           | 500 Ω              | 0.15 Ω                        |                                                                              |                    |                                          | 0.10 pF                          |
| 15 W for 5 V coil)          | А    | 2    | 103G-1-A-5/2D   | 5           | 500 Ω              | 0.12 Ω                        | $10^{12}\Omega$                                                              | 10 <sup>12</sup> Ω | 0.1pF                                    | 0.08 pF                          |
| Package Type 2              | А    | 1    | 103G-1-A-12/1D  | 12          | 1000 Ω             | 0.15 Ω                        |                                                                              |                    |                                          | 0.10 pF                          |
| 3 71                        | А    | 2    | 103G-1-A-12/2D  | 12          | 1000 Ω             | 0.12 Ω                        |                                                                              |                    |                                          | 0.08 pF                          |
|                             | Α    | 2    | 103GM-1-A-3/2D  | 3           | 300 Ω              | 0.12 Ω                        |                                                                              |                    |                                          | 0.08 pF                          |
| Guard screen and            | А    | 1    | 103GM-1-A-5/1D  | 5           | 500 Ω              | 0.15 Ω                        |                                                                              |                    |                                          | 0.10 pF                          |
| magnetic screen             | А    | 2    | 103GM-1-A-5/2D  | 5           | 500 Ω              | 0.12 Ω                        | 10 <sup>12</sup> Ω                                                           | 10 <sup>12</sup> Ω | 0.2 pF                                   | 0.08 pF                          |
| Package Type 2              | А    | 1    | 103GM-1-A-12/1D | 12          | 1000 Ω             | 0.15 Ω                        |                                                                              |                    |                                          | 0.10 pF                          |
|                             | А    | 2    | 103GM-1-A-12/2D | 12          | 1000 Ω             | 0.12 Ω                        |                                                                              |                    |                                          | 0.08 pF                          |

When an internal diode is required, the suffix D is added to the part number as shown in the table.

## Note<sup>2</sup>: Capacitance across open switch

The capacitance across the open switch was measured with other connections guarded.

## Note<sup>3</sup>: Capacitance values

The value will depend upon on the mode of connection/guarding of unused terminals. Please contact technical sales for details.

#### Note<sup>4</sup>: Insulation resistance

Insulation resistance will reduce at higher temperatures. For more information on temperature effects **click here**, or **contact Pickering** for more in depth guidance.

The technical information shown in this data sheet could contain inaccuracies or typographical errors. This information may be periodically changed or updated and these changes will be included in future versions of this data sheet.

For different values, latest specifications and product details, please contact your local Pickering sales office.

For FREE evaluation samples go to: pickeringrelay.com/samples



# RF Plots for the 103G / 103GM Reed Relays



| Mkr | Trace               | X-Axis     | Value    |
|-----|---------------------|------------|----------|
| 1 ₹ | Series 103G / 103GM | 2.4952 GHz | -3.00 dB |



| Mkr | Trace               | X-Axis     | Value |
|-----|---------------------|------------|-------|
| 1 ₹ | Series 103G / 103GM | 2.1356 GHz | 1.50  |

# 103G / 103GM Typical Insertion Loss Plot

## 103G / 103GM Typical VSWR Plot



| Mkr | Trace               | X-Axis       | Value     |
|-----|---------------------|--------------|-----------|
| 1 ▽ | Series 103G / 103GM | 498.4497 MHz | -30.00 dB |
| 2 ▽ | Series 103G / 103GM | 1.9722 GHz   | -20.00 dB |
| 3 ▽ | Series 103G / 103GM | 2.7855 GHz   | -10.00 dB |

103G / 103GM Typical Isolation Plot



## Pin Configuration, Weights and Dimensional Data (dimensions in inches, millimeters in brackets)

**Important:** Where the optional internal diode is fitted or for all Form B types, the correct coil polarity must be observed, as shown by the + symbol on the schematics.

#### Simplified Equivalent Circuits

It is convenient to consider the internal capacitances as a delta network as in the circuit diagram alongside. C1 is the capacitance between one end of the switch and the coil, C2 is the capacitance between the other end of the switch and the coil. These two figures will be approximately equal. C3 is the capacitance across the open switch. When measuring the values of any one of these capacitances, it is necessary to "guard" the unused relay connections to avoid the parallel effects of the other capacitances, connection details when performing these measurements on a capacitance bridge are shown below. Relays with an internal electrostatic screen have the screen terminals guarded in all cases.



### Similar Relays Comparison

If the Series 103GM is unsuitable for your application, Pickering also manufactures four other reed relay types with similar characteristics, but in different package sizes.

| Series Name                      | 111RF-1-A     | 113RF-1-A     | 109RF     | 50-1-A | 109RF  | 75-1-A     | 102N  | 1-1-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1021     | И-1-В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103GI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M-1-A |
|----------------------------------|---------------|---------------|-----------|--------|--------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Physical Outline                 | ELENGIAND     |               |           |        |        |            | T T   | STATE OF THE PROPERTY OF THE P | True gas | CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN<br>CALLYLLAN | No. of the second secon |       |
| Depth                            | 3.7 (0.145)   | 3.7 (0.145)   |           | 3.7 (0 | ).145) |            | 4.8 ( | 0.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.8 (    | 0.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.8 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.19) |
| Width (inches)                   | 10.0 (0.39)   | 12.5 (0.49)   |           | 15.1 ( | 0.595) |            | 19.1  | (0.75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.1     | (0.75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.75) |
| Height                           | 6.6 (0.26)    | 6.6 (0.26)    |           | 6.6 (  | 0.26)  |            | 7.6 ( | (0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2     | (0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.32) |
| Package Volume<br>( <b>mm³</b> ) | 245           | 306           |           | 369    |        | 69         | 77    | 936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | <b>2</b> 743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Typical Weights ( <b>g</b> )     | 0.56          | 0.58          | 0.8       | 88     | 0.     | 87         | 1.4   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.19     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Contact<br>Configuration         | 1-A<br>(SPST) | 1-A<br>(SPST) | 1-<br>(SP |        |        | -A<br>PST) |       | 1-A 1-B (SPST) (SPNC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-A<br>(SPST)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Reed Switch Type                 | Dry           | Dry           | Dry       | Dry    | Dry    | Dry        | Di    | Dry Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Stand-off Voltage ( <b>V</b> )   | -             | -             | -         | -      | -      | -          | -     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     |
| Switching Voltage ( <b>V</b> )   | 170           | 200           | 200       | 200    | 200    | 200        | 200   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200   |
| Switching Current (A)            | 0.5           | 0.5           | 1.0       | 0.5    | 1.0    | 0.5        | 0.5   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5   |
| Carry Current (A)                | 0.5           | 0.5           | 1.2       | 1.2    | 1.2    | 1.2        | 1.2   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2   |
| Switch Power ( <b>W</b> )        | 10            | 10            | 15/20     | 10     | 15/20  | 10         | 10    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10    |

## **Reed Relay Selection Tool**

Because Pickering offer the largest range of high-quality reed relays, sometimes it can be difficult to find the right reed relay you require. That is why we created the Reed Relay Selector, this tool will help you narrow down our offering to get you the correct reed relay for your application. To try the tool today go to: pickeringrelay.com/reed-relay-selector-tool

## **Standard Build Options**

The Series 103 Reed Relays are available with a number of standard build options to tailor them to your specific application. These options are detailed in the table below. If you decide to go ahead and specify one, or more, of these options you will be allocated a unique part number suffix.

| Mechanical Build Options                              | Electrical Build Options                                       |
|-------------------------------------------------------|----------------------------------------------------------------|
| Special pin configurations or pin lengths             | Different coil resistance                                      |
| Special print with customer's own part number or logo | Very low capacitance                                           |
| Custom packaging possibility                          | Operate or de-operate time                                     |
|                                                       | Pulse capability                                               |
|                                                       | Enhanced specifications                                        |
|                                                       | Non-standard coil voltages and resistance figures              |
|                                                       | Special Life testing under customer's specific load conditions |
|                                                       | Specific environmental requirements                            |
|                                                       | Controlled thermal EMF possibility                             |

#### Customization

If your specific requirements are not met by standard relay, or any of the standard build options, please speak to us to discuss producing a customized reed relay to service your specific application: pickeringrelay.com/contact

#### 3D Models

Interactive 3D models of the complete range of Pickering relay products in STEP, IGS and SLDPRT formats can be downloaded from the website: pickeringrelay.com/3d-models



#### Help

If you need any technical advice or other help, please do not hesitate to contact our Technical Sales Department. We will always be pleased to discuss Pickering relays with you. email: techsales@pickeringrelay.com

#### **Contact Us**

UK Headquarters - email: sales@pickeringrelay.com | Tel. +44 1255 428141
USA - email: ussales@pickeringrelay.com | Tel. +1 781 897 1710

Germany - email: desales@pickeringtest.com | Tel. +49 89 125 953 160

France - email: frsales@pickeringtest.com | Tel. +33 9 72 58 77 00

Nordic - email: ndsales@pickeringtest.com | Tel. +46 340 69 06 69

Czech Republic: czsales@pickeringtest.com | Tel. +420 558-987-613

China - email: chinasales@pickeringtest.com | Tel. +86 4008 799 765

For a full list of agents, distributors and representatives visit: pickeringrelay.com/agents



# 10 Key Benefits of Pickering Reed Relays

|                                                            |                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                     |                                                                              |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Key Benefit                                                | Pickering Reed Relays                                                                                                                                                                                                                              | Typical Industry Reed Relays                                                                                                                                                                                                                                                                          |                                                                              |
| Instrumentation Grade<br>Reed Switches                     | Instrumentation Grade Reed Switches with vacuum sputtered Ruthenium plating to ensure stable, long life up to 5x10E9 operations.                                                                                                                   | Often low grade Reed Switches with electroplated Rhodium plating resulting in higher, less stable contact resistance.                                                                                                                                                                                 |                                                                              |
| Formerless Coil<br>Construction                            | Formerless coil construction increases the coil winding volume, maximizing magnetic efficiency, allowing the use of less sensitive reed switches resulting in optimal switching action and extended lifetime at operational extremes.              | Use of bobbins decreases the coil winding volume, resulting in having less magnetic drive and a need to use more sensitive reed switches which are inherently less stable with greatly reduced restoring forces.                                                                                      | Pickering former-less coil Typical industry coil wound on bobbin             |
| 3<br>Magnetic Screening                                    | Mu-metal magnetic screening (either external or internal), enables ultra-high PCB side-by-side packing densities with minimal magnetic interaction, saving significant cost and space. Pickering Mu-Metal magnetic screen - interaction approx. 5% | Lower cost reed relays have minimal or no magnetic screening, resulting in magnetic interaction issues causing changes in operating and release voltages, timing and contact resistance, causing switches to not operate at their nominal voltages. Typical industry screen - interaction approx. 30% | X-Ray of Pickering X-Ray of typical industry magnetic screen magnetic screen |
| <b>4</b> SoftCenter™ Technology                            | SoftCenter™ technology, provides maximum cushioned protection of the reed switch, minimising internal lifetime stresses and extending the working life and contact stability.                                                                      | Transfer moulded reed relays (produced using high temperature/pressure), result in significant stresses to the glass reed switch which can cause the switch blades to deflect or misalign leading to changes in the operating characteristics, contact resistance stability and operating lifetime.   | Pickering soft center protection of the reed switch                          |
| 5<br>100% Dynamic<br>Testing                               | 100% testing for all operating parameters including dynamic contact wave-shape analysis with full data scrutiny to maintain consistency.                                                                                                           | Simple dc testing or just batch testing which may result in non-operational devices being supplied.                                                                                                                                                                                                   | Dynamic Contact Resistance Test  — Operate — Release  Coll Voltage           |
| 6<br>100% Inspection<br>at Every Stage of<br>Manufacturing | Inspection at every stage of manufacturing maintaining high levels of quality.                                                                                                                                                                     | Often limited batch inspection.                                                                                                                                                                                                                                                                       |                                                                              |
| 7<br>100% Thermal<br>Cycling                               | Stress testing of the manufacturing processes, from -20 °C to +85 °C to -20 °C, repeated 3 times.                                                                                                                                                  | Rarely included resulting in field failures.                                                                                                                                                                                                                                                          | +85°C                                                                        |
| 8<br>Flexible<br>Manufacturing<br>Process                  | Flexible manufacturing processes allow quick-turn manufacturing of small batches.                                                                                                                                                                  | Mass production: Usually large batch sizes and with no quick-turn manufacturing.                                                                                                                                                                                                                      | FAST                                                                         |
| Custom Reed Relays                                         | Our reed relays can be customized easily, e.g. special pin configurations, enhanced specifications, non-standard coil or resistance figures, special life testing, low capacitance, and more.                                                      | Limited ability to customize.                                                                                                                                                                                                                                                                         |                                                                              |
| Product Longevity                                          | Pickering are committed to product longevity; our reed relays are manufactured and supported for more than 25 years from introduction, typically much longer.                                                                                      | Most other manufacturers discontinue parts when they reach a low sales threshold; costing purchasing and R&D a great deal of unnecessary time and money to redesign and maintain supply.                                                                                                              | Product 25+Years Longevity                                                   |

For more information go to: pickeringrelay.com/10-key-benefits

