
Series 106

- 1 Form A, 20 W at 200 V
- 1 Form A, 10 W at 500 V, 1500 V Standoff

- 1 Form C. 3 W at 200 V
- Highest quality instrumentation grade switches
- Internal mu-metal magnetic screen
- Insulation resistance >10¹² Ω for Form A devices
- Dry switches are available in both 1 Form A and 1 Form C configurations
- 3 V, 5 V or 12 V coils with optional internal diode
- 5 V coils may be driven directly from TTL logic
- Ideal choice for automatic test equipment.
- Additional build options are available
- Many benefits compared to industry standard relays (see last page)

Switch Ratings

1 Form A (energize to make)	1 Form C (changeover)
Up to 1A switching at 20 W	3 W at 200 V
500 VDC switching at 10 W	

Series 106 switch ratings - contact ratings for each switch type
--

Switch No	Switch form	Power rating	Max. switch current	Max. carry current	Max. switching volts	Life expectancy ops typical (see Note ¹)	Operate time inc bounce (max)	Release time	Special features
1	А	20 W	1.0 A	1.2 A	200	10°	0.5 ms	0.2 ms	General purpose
2	А	10 W	0.5 A	1.2 A	200	10°	0.5 ms	0.2 ms	Low level
3	С	3 W	0.25 A	1.2 A	200	10 ⁷	1.0 ms	0.5 ms	Change over
5	А	10 W	0.5 A	1.2 A	500	10 ⁹	0.5 ms	0.2 ms	1500 V d.c. standoff

Switch no.2 is particularly good for switching low currents and/or voltages. It is the ideal switch for A.T.E. systems where cold switching techniques are often used. Where higher power levels are involved, switch no.1 is more suitable.

Note1: Life Expectancy

The life of a reed relay depends upon the switch load and end of life criteria. For example, for an 'end of life' contact resistance specification of 1Ω , switching low loads (10 V at 10 mA resistive) or when 'cold' switching, typical life is approx 1×10^9 ops. At the maximum load (resistive), typical life is 1×10^7 ops. In the event of abusive conditions, e.g. high currents due to capacitive inrushes, this figure reduces considerably. Pickering will be pleased to perform life testing with any particular load condition.

Operating Voltages

Coil voltage - nominal	Must operate voltage - maximum at 25 °C	Must release voltage - minimum at 25 °C
3 V	2.25 V	0.3 V
5 V	3.75 V	0.5 V
12 V	9 V	1.2 V

Environmental Specification/Mechanical Characteristics

In the table below, the upper temperature limit can be extended to ± 125 °C if the coil drive voltage is increased to accommodate the resistance/temperature coefficient of the copper coil winding. This is approximately 0.4% per °C. This means that at 125 °C the coil drive voltage will need to be increased by approximately $40 \times 0.4 = 16\%$ to maintain the required magnetic drive level. Please contact sales@pickeringrelay.com for assistance.

Operating Temperature Range	-20 °C to +85 °C
Storage Temperature Range	-35 °C to +100 °C
Shock Resistance	50 g
Vibration Resistance (10 - 2000 Hz)	20 g
Soldering Temperature (max) (10 s max)	270°C
Washability (Proper drying process is recommended)	Fully Sealed

Washing Guidelines

Pickering do not make any specific recommendations on washing reed relays, due to the large number of factors in cleaning processes, however we do have suggestions on best practices. Click here for more information.

Series 106 Coil data and type numbers

Davies Ture	Time Number	Coil	Coil	Max. contact	Insulation (minimum (see N		Capacitance (typical) (see Note²)	
Device Type	Type Number	(V)	resistance	resistance (initial)	Switch to coil	Across switch	Closed switch to coil	Across open switch
1 Form A	106-1-A-5/1D	5	500 Ω	0.15.0	10 ¹² Ω	10 ¹² Ω	0.5	0.1
Switch No. 1 Package Type 1	106-1-A-12/1D	12	1000 Ω	0.15 Ω	1011	1011	2.5 pF	0.1pF
1 Form A	106-1-A-3/2D	3	500 Ω		10 ¹² Ω	10 ¹² Ω	2.5 pF	
Switch No. 2	106-1-A-5/2D	5	500 Ω	0.12 Ω				0.1pF
Package Type 1	106-1-A-12/2D	12	1000 Ω					
1 Form A	106-1-A-5/5D	5	375 Ω	0.15.0	10120	10120	2.5 pF	0.155
Switch No. 5 Package Type 1	106-1-A-12/5D	12	1000 Ω	0.15 Ω	10 ¹² Ω	10 ¹² Ω		0.1pF
1 Form C	106-1-C-5/3D	5	500 Ω	0.20.0	10 ¹² O	10 ¹⁰ Ω	See Note ³	See Note ³
Switch No. 3 Package Type 2	106-1-C-12/3D	12	1000 Ω	0.20 Ω	10'212	10.5(1		

When an internal diode is required, the suffix D is added to the part number as shown in the table.

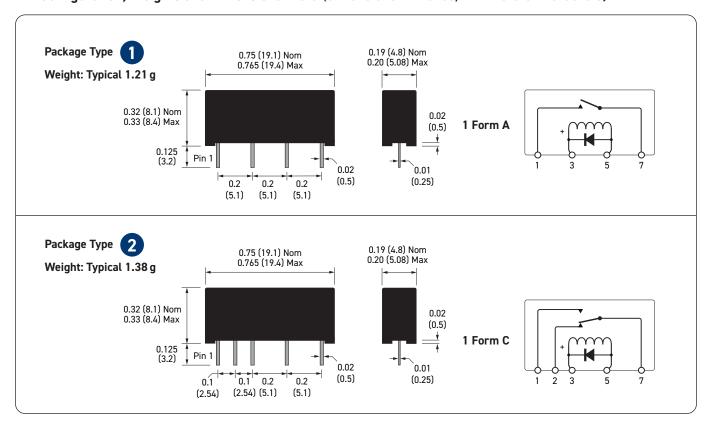
Note2: Capacitance across open switch

The capacitance across the open switch was measured with other connections guarded.

Note³: Capacitance values

The value will depend upon on the mode of connection/guarding of unused terminals. Please contact technical sales for details.

Note4: Insulation resistance


Insulation resistance will reduce at higher temperatures. For more information on temperature effects **click here**, or **contact Pickering** for more in depth guidance.

The technical information shown in this data sheet could contain inaccuracies or typographical errors. This information may be periodically changed or updated and these changes will be included in future versions of this data sheet.

For different values, latest specifications and product details, please contact your local Pickering sales office.

For FREE evaluation samples go to: pickeringrelay.com/samples

Pin Configuration, Weights and Dimensional Data (dimensions in inches, millimeters in brackets)

Important: Where the optional internal diode is fitted or for all Form B types, the correct coil polarity must be observed, as shown by the + symbol on the schematics.

Similar Relays Comparison

If the Series 106 is unsuitable for your application, Pickering also manufactures three other series of reed relays with similar characteristics, but in different package sizes.

Series Name	105-1-A		105-1-B	105-1-C	105-2-A			108-1-A		108-1-C		
Physical Outline				The Table To the T	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 2 K TOO			The state of the s	100		
Depth		6.6 ((0.26)		6.6 (0.26)	6.6 (0.26)		6.6 (0.26)		3.7 (0.	145)	3.7 (0.145)
Width (inches)		19.1	(0.75)		19.1 (0.75)	19.1 (0.75)		19.1 (0.75)		20.0 (0	0.79)	20.0 (0.79)
Height		7.9 (0.31)		10.7 (0.42)	7.9 (0.31)		10.7 (0.42)		6.6 (0	.26)	6.6 (0.26)
Package Volume (mm³)	996			1349	996	1349			48	489		
Typical Weights (g)	1.63			2.47	1.71	2.18			1.03		1.11	
Contact Configuration	1-A (SPST)		1-B (SPNC)	1-C (SPDT)	2-A (SPST)			1-A (SPST)		1-C (SPDT)		
Reed Switch Type	Dry	Dry	Dry	Mercury Wetted	Dry	Dry	Dry	Dry	Mercury Wetted	Dry	Dry	Dry
Stand-off Voltage (V)	-	-	1000	-	-	-	-	-	-	-	-	-
Switching Voltage (V)	200	200	500	500	200	200	200	200	500	200	200	200
Switching Current (A)	1.0	0.5	0.5	2	1.0	0.25	1.0	0.5	2	1.0	0.5	0.5
Carry Current (A)	1.2	1.2	1.2	3	1.2	1.2	1.2	1.2	3	1.2	1.2	1.2
Switch Power (W)	20 (15)	10	10	50	1D: 20 (15) 2D: 10	3	20 (15)	10	50	20 (15)	10	3

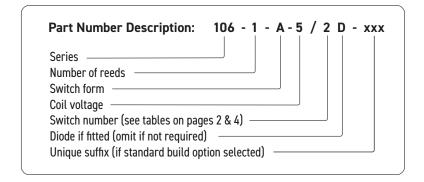
Series Name		106-1-4	4	106-1-C		107-1-A		107-1-B	107-1-C		107-2-	A	107-2-C	
Physical Outline		H B		Ton Tono									ROCKING LICENVEST PC CONG LICE	
Depth	4	4.8 (0.19))	4.8 (0.19)		4.8	(0.19)		4.8 (0.19)	4.8 (0.19)		4.8 (0.19)		4.8 (0.19)
Width (inches)	1	9.1 (0.7	5)	19.1 (0.75)		19.	1 (0.75)		19.1 (0.75)	19.1 (0.75)		19.1 (0.7	'5)	24.1 (0.95)
Height	8	8.1 (0.32	2)	8.1 (0.32)		7.6	(0.30)		10.2 (0.40)	7.6 (0.30)		10.2 (0.4	0)	10.2 (0.40)
Package Volume (mm³)		1 743		2 743		697		936	697	936		1180		
Typical Weights (g)		1.21		1.38		1.32		2.20	1.74	2.24		2.42		
Contact Configuration		1-A (SPST)		1-C (SPDT)		(9	1-A SPST)		1-B (SPNC)	1-C (SPDT)	2-A (SPST)		2-C (DPDT)	
Reed Switch Type	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Mercury Wetted	Dry	Dry	Dry	Dry	Mercury Wetted	Dry
Stand-off Voltage (V)	-	-	1500	-	-	1	500	-	-	-	-	-	-	-
Switching Voltage (V)	200	200	500	200	200	200	400	500	200	200	200	200	500	200
Switching Current (A)	1.0	0.5	0.5	0.25	1.0	1.0 0.5 0.5 2		1.0	0.25	1.0	0.5	2	0.25	
Carry Current (A)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	3	1.2	1.2	1.2	1.2	3	1.2
Switch Power (w)	20	10	10	3	20 (15)	10	10	50	1D: 20 (15) 2D: 10	3	20 (15)	10	50	3

Reed Relay Selection Tool

Because Pickering offer the largest range of high-quality reed relays, sometimes it can be difficult to find the right reed relay you require. That is why we created the Reed Relay Selector, this tool will help you narrow down our offering to get you the correct reed relay for your application. To try the tool today go to: pickeringrelay.com/reed-relay-selector-tool

Standard Build Options

The Series 106 Reed Relays are available with a number of standard build options to tailor them to your specific application. These options are detailed in the table below. If you decide to go ahead and specify one, or more, of these options you will be allocated a unique part number suffix.


Mechanical Build Options	Electrical Build Options
Special pin configurations or pin lengths	Different coil resistance
Special print with customer's own part number or logo	Different stand-off or switching voltage
Custom packaging possibility	Operate or de-operate time
Equivalents to competitors discontinued parts	Pulse capability
	Enhanced specifications
	Equivalents to competitors discontinued parts
	Non-standard coil voltages and resistance figures
	Special Life testing under customer's specific load conditions
	Specific environmental requirements
	Controlled thermal EMF possibility

Customization

If your specific requirements are not met by standard relay, or any of the standard build options, please speak to us to discuss producing a customized reed relay to service your specific application: pickeringrelay.com/contact

3D Models

Interactive 3D models of the complete range of Pickering relay products in STEP, IGS and SLDPRT formats can be downloaded from the website: pickeringrelay.com/3d-models

Help

If you need any technical advice or other help, please do not hesitate to contact our Technical Sales Department. We will always be pleased to discuss Pickering relays with you. email: <a href="technical-center-technical-center

Contact Us

UK Headquarters - email: sales@pickeringrelay.com | Tel. +44 1255 428141

USA - email: ussales@pickeringrelay.com | Tel. +1 781 897 1710

Germany - email: desales@pickeringtest.com | Tel. +49 89 125 953 160

France - email: frsales@pickeringtest.com | Tel. +33 9 72 58 77 00

Nordic - email: ndsales@pickeringtest.com | Tel. +46 340 69 06 69

Czech Republic: czsales@pickeringtest.com | Tel. +420 558-987-613

For a full list of agents, distributors and representatives visit: pickeringrelay.com/agents

China - email: chinasales@pickeringtest.com | Tel. +86 4008 799 765

10 Key Benefits of Pickering Reed Relays

Key Benefit	Pickering Reed Relays	Typical Industry Reed Relays	
Instrumentation Grade Reed Switches	Instrumentation Grade Reed Switches with vacuum sputtered Ruthenium plating to ensure stable, long life up to 5x10E9 operations.	Often low grade Reed Switches with electroplated Rhodium plating resulting in higher, less stable contact resistance.	
Formerless Coil Construction	Formerless coil construction increases the coil winding volume, maximizing magnetic efficiency, allowing the use of less sensitive reed switches resulting in optimal switching action and extended lifetime at operational extremes.	Use of bobbins decreases the coil winding volume, resulting in having less magnetic drive and a need to use more sensitive reed switches which are inherently less stable with greatly reduced restoring forces.	Pickering former-less coil Typical industry coil wound on bobbin
3 Magnetic Screening	Mu-metal magnetic screening (either external or internal), enables ultra-high PCB side-by-side packing densities with minimal magnetic interaction, saving significant cost and space. Pickering Mu-Metal magnetic screen - interaction approx. 5%	Lower cost reed relays have minimal or no magnetic screening, resulting in magnetic interaction issues causing changes in operating and release voltages, timing and contact resistance, causing switches to not operate at their nominal voltages. Typical industry screen - interaction approx. 30%	X-Ray of Pickering X-Ray of typical industry magnetic screen magnetic screen
∆ SoftCenter [™] Technology	SoftCenter™ technology, provides maximum cushioned protection of the reed switch, minimising internal lifetime stresses and extending the working life and contact stability.	Transfer moulded reed relays (produced using high temperature/pressure), result in significant stresses to the glass reed switch which can cause the switch blades to deflect or misalign leading to changes in the operating characteristics, contact resistance stability and operating lifetime.	Pickering soft center protection of the reed switch
5 100% Dynamic Testing	100% testing for all operating parameters including dynamic contact wave-shape analysis with full data scrutiny to maintain consistency.	Simple dc testing or just batch testing which may result in non-operational devices being supplied.	Dynamic Contact Resistance Test Operate Release Coil Voltage
6 100% Inspection at Every Stage of Manufacturing	Inspection at every stage of manufacturing maintaining high levels of quality.	Often limited batch inspection.	
7 100% Thermal Cycling	Stress testing of the manufacturing processes, from -20 °C to +85 °C to -20 °C, repeated 3 times.	Rarely included resulting in field failures.	+85°C
Flexible Manufacturing Process	Flexible manufacturing processes allow quick-turn manufacturing of small batches.	Mass production: Usually large batch sizes and with no quick-turn manufacturing.	FAST
Q Custom Reed Relays	Our reed relays can be customized easily, e.g. special pin configurations, enhanced specifications, non-standard coil or resistance figures, special life testing, low capacitance, and more.	Limited ability to customize.	
10 Product Longevity	Pickering are committed to product longevity, our reed relays are manufactured and supported for more than 25 years from introduction, typically much longer.	Most other manufacturers discontinue parts when they reach a low sales threshold; costing purchasing and R&D a great deal of unnecessary time and money to redesign and maintain supply.	Product 25+Years Longevity

For more information go to: pickeringrelay.com/10-key-benefits

