Pickering Series 120

Single Pole $4mm^2$ Reed Relays

Up to 1 Amp switching - Very high packing density
Stacking on 4mm x 4mm pitch

Features

- Highest packing density currently available
- 3, 5 or 12 Volt coils
- Switching up to 1 A, 20 W
- 1 Form A (SPST) Normally Open (NO) Energize to make
- Plastic package with internal mu-metal magnetic screen
- Highest quality instrumentation grade switches
- Insulation resistance greater than $10^{12} \Omega$
- 100% tested for dynamic contact resistance for guaranteed performance

The Series 120 reed relay range takes up the minimum board area making them ideal for very high density applications such as A.T.E. switching matrices or multiplexers. Requiring a board area of only 4mm x 4mm, these relays allow the highest packing density currently available.

Two switch types are available, a general purpose sputtered ruthenium switch rated at 15 Watts, 1 Amp (3 volt version) or 20 Watts, 1 Amp (5 & 12 volt versions) and a low level sputtered ruthenium switch rated at 10 Watts, 0.5 Amps.

These are the same reed switches as used in many other long established Pickering ranges but are orientated vertically within the package, allowing this high density. The small size of the package does not allow an internal diode. Back EMF suppression diodes are included in many relay drivers but if they are not, and depending on your drive methods, these may have to be provided externally.

While socketing relays is not normally recommended due to the risk of affecting contact resistance integrity, it is appreciated that sockets may sometimes be desired for ease of servicing/replacement, in the case of a relay being damaged or reaching the end of its working life.

The device has pins on a 2mm square pitch. There are suitable connectors available from some manufacturers, both SMD and Through Hole, that will allow these relays to be stacked in either a row or in a matrix on a 4mm pitch.

A total of 528 Series 120 relays on Pickering Interfaces ultra-high-density PXI module illustrates the packing density of these extremely small Reed Relays.
Series 120 switch ratings - The contact ratings for each switch type are shown below:

<table>
<thead>
<tr>
<th>Switch No</th>
<th>Switch form</th>
<th>Power rating</th>
<th>Max. switch current</th>
<th>Max. carry current</th>
<th>Max. switching volts</th>
<th>Life expectancy</th>
<th>Operate time</th>
<th>Release time</th>
<th>Special features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>20 W (12 V)</td>
<td>1.2 A</td>
<td>200</td>
<td>10</td>
<td>0.14 pF</td>
<td>0.5 ms</td>
<td>0.2 ms</td>
<td>General purpose</td>
<td></td>
</tr>
<tr>
<td>2 A</td>
<td>10 W</td>
<td>0.5 A</td>
<td>200</td>
<td>10</td>
<td>2.9 pF</td>
<td>0.5 ms</td>
<td>0.2 ms</td>
<td>Low level</td>
<td></td>
</tr>
</tbody>
</table>

Switch no. 2 is particularly good for switching low currents and/or voltages. It is the ideal switch for general purpose reed relays where cold switching techniques are often used. Where higher power levels are involved, switch no. 1 is more suitable.

Operating voltages

<table>
<thead>
<tr>
<th>Coil voltage</th>
<th>Must operate voltage - maximum at 25°C</th>
<th>Must release voltage - minimum at 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 V</td>
<td>12 V</td>
<td>9 V</td>
</tr>
<tr>
<td>5 V</td>
<td>22 V</td>
<td>17 V</td>
</tr>
<tr>
<td>12 V</td>
<td>37 V</td>
<td>30 V</td>
</tr>
</tbody>
</table>

Coil data and type numbers

<table>
<thead>
<tr>
<th>Device type</th>
<th>Type Number</th>
<th>Coil resistance</th>
<th>Max. contact resistance (initial)</th>
<th>Insulation resistance (minimum)</th>
<th>Capacitance (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Form A</td>
<td>120-1-A-1/3</td>
<td>200 Ω</td>
<td>0.18 Ω</td>
<td>10¹³ Q</td>
<td>2.9 pF</td>
</tr>
<tr>
<td></td>
<td>120-1-A-1/5</td>
<td>300 Ω</td>
<td></td>
<td>10¹³ Q</td>
<td>0.14 pF</td>
</tr>
<tr>
<td></td>
<td>120-1-A-1/12</td>
<td>800 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Form A</td>
<td>120-1-A-2/3</td>
<td>200 Ω</td>
<td>0.18 Ω</td>
<td>10¹³ Q</td>
<td>2.9 pF</td>
</tr>
<tr>
<td></td>
<td>120-1-A-2/5</td>
<td>300 Ω</td>
<td></td>
<td>10¹³ Q</td>
<td>0.14 pF</td>
</tr>
<tr>
<td></td>
<td>120-1-A-2/12</td>
<td>800 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The upper temperature limit can be extended to +125 °C if the coil drive voltage is increased to accommodate the resistance/temperature coefficient of the copper coil winding. This is approximately 0.4% per °C. This means that at 125 °C the coil drive voltage will need to be increased by approximately 40 x 0.4 = 16% to maintain the required magnetic drive level.

Environmental specification

Standard operating temperature range: -20 to +65 °C.

Note 1 Life expectancy

The life of a reed relay depends upon the switch load and end of life criteria. For example, for an ‘end of life’ contact resistance specification of 1 Ω, switching low loads (10 V at 10 mA resistive) or when ‘cold’ switching, typical life is approx 1 x 10⁷ ops. At the maximum load (resistive), typical life is 1 x 10⁹ ops. In the event of abusive conditions, e.g. high currents due to capacitive inrushes, this figure reduces considerably. Pickering will be pleased to perform life testing with any particular load condition.

Note 2 Switch to coil capacitance

Due to the asymmetrical internal construction of the relay, the capacitance to the coil from one switch connection is approximately half the capacitance of the other switch connection, pin 1 is lower. In some applications this feature may be used to advantage for example, in a multiplexer where it is desirable to minimize the capacitance of the common connection to maximize bandwidth.

Note 3 Capacitance across open switch

The capacitance across the open switch was measured with other connections guarded.

Note 4 12 volt coil versions

With limited room inside small packages, it is not possible to achieve the high coil resistance figures that would be preferred, without using extremely fine wire gauges. If these ultra-fine gauges were used, there would be a resultant risk of poorer reliability due to the delicate nature of such wire. Reliability is of paramount importance to Pickering, so ultra fine gauges are avoided. The heating effect from the coil (V²/R) will therefore be higher than for the 3 or 5 volt versions. For example,

- 3 volt type: 200 Ohms × 45 mWatts
- 5 volt type: 300 Ohms × 83 mWatts
- 12 volt type: 800 Ohms × 180 mWatts

12 Volt versions are suitable for applications such as Multiplexers or Matrices where they are operated on a low duty cycle but consideration should be made where they are left operated for longer due to this heating effect.

Main contact:
UK Headquarters: email: sales@pickeringrelay.com | Tel. +44 1255 428141
Worldwide contacts:
USA: email: ussales@pickeringtest.com | Tel: +1 781 897 1710
Germany: email: desales@pickeringtest.com | Tel: +49 49 125 953 160
China: email: johnson@tomtech.cn | Tel: 0755 8374 5452
For a full list of agents and representatives visit: pickeringrelay.com/agents

Pin Configuration and Dimensional Data

Dimensions in Millimeters (Inches in brackets)

Example of Packing Density - Actual Size

The above full scale graphic illustrates sixteen new Series 120 Relays packed into an area of 1.0cm x 1.0cm, in comparison, only four of the industry standard reed relays can be fitted into the same area.

3D Models: Interactive models of the complete range of Pickering relay products can be downloaded from the web site.

Internal Mu-metal Magnetic Screen

The Series 120 relays are fitted with an internal mu-metal magnetic screen which permits side-by-side stacking on a 4mm pitch.

Order Code

<table>
<thead>
<tr>
<th>Series</th>
<th>Number of reeds</th>
<th>Switch form</th>
<th>Coi voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 - 1</td>
<td>A - 5</td>
<td>/ 2</td>
<td></td>
</tr>
</tbody>
</table>

Help

If you need any technical advice or other help, for example, any special tests that you would like carried out, please do not hesitate to contact our Technical Sales Department. We will always be pleased to discuss Pickering relays with you.

email: techsales@pickeringrelay.com

Please ask us for a FREE evaluation sample.