Applicatior							High D	ensity Ve	rtical		į.		-	-	
Series Name		N 124-1-A	h	120-1-A	117-1-A	117-2-A	116-1-A	116-2-A	115	i-1-A	11	5-2-A	112-1-A	110)-1-A
Physical Outlin	ie	124-1-A H ² M 4mm ² M	Hen	4 mm ² ™	States a	TRANSPORT	111-111-111-111-111-111-111-111-111-11	Personal management ma		100 mm					
eatures						Highest	Quality Instru	mentation Gra	ade Reed Swi	itches					
cutures			L			Ultra High Pa	cking Density				,		High	Packing Den	sity
	Depth	3.9 (0.153)	3.9 (0	0.153)	3.7 (0	0.145)	3.7 (0).145)		3.7 (0	.145)		3.7 (0.145)	3.7 (0.145)	
Dimensions mm (inches)	Width	3.9 (0.153)	3.9 (0	0.153)	6.6 (0.26)	9.9 (0.39)	6.6 (0.26)	9.9 (0.39)	6.6 ((0.26)	9.9	(0.39)	10.0 (0.395)	10 (0.39)
	Height	9.5 (0.375)	15.5 (0.61) 9.52 (0.375)		12.45	12.45 (0.49)		15.5 (0.61)	11.0 (0.43)	15.2	(0.6)			
Footprint (0.1 i	nch grid)	rid)													
Contact Config	uration	1A (SPST)	1A (S	SPST)	1A (SPST)			2A (DPST)	1A (SPST)		2A (I	DPST)	1A (SPST)	1A (S	SPST)
Switch Schema	atic	°, X	, she was a start of the start			ן ניין ניין		,	<u>}</u>	Ţ.				Ĩ,	
Reed Switch Ty	/pe	Low Level Dry Reed	General Dry Reed	Low Level Dry Reed	Low Leve	I Dry Reed	Low Level	Dry Reed	General Dry Reed	Low Level Dry Reed	General Dry Reed	Low Level Dry Reed	Low Level Dry Reed	General Dry Reed	Low Level Dr Reed
Switch Numbe	r	2	1	2	:	2	2		1	2	1	2	2	1	2
)iode Availabl	e	No	N	10	Y	es	Yes			Ye	s	Yes	Y	es	
Switching Volt	age/V	170	20	00	1	70	20	200		20	0		200	2	00
witching Curr	rent/A	0.5	1.0	0.5	0	.5	0	.5	1.0 0.5		1.0	0.5	0.5	1.0	0.5
arry Current	Ά	0.5	1	.2	0	.5	0	.5	1.		.2		0.5	1	.2
witch Power/	W	5	15(3V), 20	10		5	1	10		20 10		10	10	20 10	
lax Initial Contact Resist	ance/mΩ	120	1:	20	1:	20	12	20		12	0		120	1:	50
_ife	Min Load	2.5 x 10E8	10	E9	2.5 x	10E8	2.5 x	10E8		108	Ξ9		2.5 x 10E8	10)E9
xpectancy/ perations	Typical	10E7	10	E8	10)E7	10	E7		108	E8		10E7	10)E8
perations	Max Load	10E6	10)E7	10)E6	10	E6		108	=7		10E6	10)E7
)perate Time/	ms	0.2	0	.5	0	0.3		.5		0.	5		0.5	0	.5
elease Time/	ms	0.1	0	.2	0.	15	0	.2		0.	2		0.2	0	.2
nsulation Resi	istance/Ω	10E12 Ω	10E	12 Ω	10E	12 Ω	10E	12 Ω		10E1	2 Ω		10E12 Ω	10E	12 Ω
	3V/Ω	75	200	200	200	-	250	-	2	50	-	-	250	-	250
Coil Resistance	5V/Ω	200	300	500	400	250	500 375		500		250 350		500	500	
resistance	12V/Ω	-	800	800		-	750	750	10	000	-	-	750	10	000
	24V/Ω	-	-	-		_	-	-		-	-	-	-	-	-

			Plastic	Package SIL							Metal Packag	ge SIL				Application
113-1-A 113SP-1-A 113-2-A 113-1-C	111P-1-A	109P-1-A	106-1-A 106-1-C	105-1-A	105-1-C 105-1-B	105-2-A 103-1-A & 103M-1-A	111-1-A	109-1-A 109-1-C	109-1-B 109-2-A	108-1-A 108-1-C		107-1-A	107-1-C 107-1-I	B 107-2-A	107-2-C	Series Name
	1000	TTT					TTT	Free free	TTI TIM		- Inn		In the second		m	Physical Outline
			Highest Quality Instrumentation	Frade Reed Switches		Low				Highe	est Quality Instrumentation G	Grade Reed Switches				
High Packing Density	High Pa	acking Density	Standard 0.2" Pitch	Wide Ra	ige of Configurations	Capacitance					SoftCenter® Construction in	Mu-Metal Can				Features
3.7 (0.145)	3.7 (0.145)	3.7 (0.145)	4.8 (0.19)		6.6 (0.26)	4.8 (0.19)	3.7 (0.145)	3.7 (0.145)		3.7 (0.145	i)		4.8 (0.19)			Depth
12.5 (0.49)	10.0 (0.39)	15.1 (0.595)	19.1 (0.75)		19.1 (0.75)	19.1 (0.75)	10.0 (0.39)	15.1 (0.595)		20.0 (0.79))	· · · · · · · · · · · · · · · · · · ·	19.1 (0.75)		24.1 (0.95)	Width Dimensions mm (inches)
6.6 (0.26) 8.9 (0.35) 6.6 (0.26)	6.6 (0.26)	6.6 (0.26)	8.1 (0.32)	7.9 (0.31)		10.7 (0.42) 8.1 (0.32)	6.6 (0.26)	6.6 (0.26)	8.9 (0.35)	6.6 (0.26)	8.9 (0.35)	7.6 (0.3)		10.2 (0.4)		Height
									+ +					· · · · · · · · · · · · · · · · · · ·		Footprint (0.1 inch grid)
1A (SPST) 1A (SPST) 2A (DPST) 1C (SPDT)	1A (SPST)	1A (SPST)	1A (SPST) 1C (SPDT)	1A (SPST)	1C (SPDT) 1B (SPNC)	2A (DPST) 1A (SPST)	1A (SPST)	1A (SPST) 1C (SPDT)	1B (SPNC) 2A (DPST)	1A (SPST) 1C (SPDT	Г) 2A (DPST)	1A (SPST)	1C (SPDT) 1B (SPN	IC) 2A (DPST)	2C (DPDT)	Contact Configuration
				· · · · · · · · · · · · · · · · · · ·			, ,					IA (3F31)				
	, îm j			, îm,			, îm, î					, îm				Switch Schematic
Low Level Dry Reed Dry Reed	General Dry Reed	General Dry Reed	General Low Dry Level Dry Dry Reed Reed Reed	General Dry Reed Level Dry Reed Switch Switch Switch	tive Dry Reed General Dry	General Low Standard General Low Level Dry Level Dry Mercury Dry Low Level Dry Reed Reed Switch Reed Dry Dry Reed	General Dry Reed	General Dry Low Level Dry Reed Dry Reed	Low Level Dry Reed	General Low Level Dry Reed Dry Reed	d General Dry Low Level Reed Dry Reed	General Dry Reed Low Level Dry Reed High Voltage Switch Standard Mercury Switch Position	ve Dry Reed General	Dry General Low Level	Standard Mercury Dry Reed Switch	Reed Switch Type
2 3	1	1 2	1 2 3	1 2 4 6 8	3 1	1 2 6 1 2	1	1 2 3	2	1 2 3	1 2	1 2 4 6 8	3 1	1 2	6 3	Switch Number
Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes			Yes			Diode Available
200 30	170	200	200	200 400 500 350	200	500 200	170	200 30	200	200		200 400 500 350		200	500 200	Switching Voltage/V
0.5 0.1	0.5	1.0 0.5	1.0 0.5 0.25	1 0.5 0.5 2 2	0.25 1	1 0.5 2 1 0.5	0.5	1 0.5 0.1	0.5	1 0.5 0.25	1 0.5	1 0.5 2 2	0.25 1	1 0.5	2 0.25	Switching Current/A
0.5 0.1	0.5	1.2	1.2	1.2 3 2		3 1.2	0.5	1.2 0.1	1.2	1.2		1.2 3 2		1.2	3 1.2	Carry Current/A
10 3	5	15/20 10	20 10 3	15(5V), 20 10 10 50 50	3 15(5V),	20 10 50 15 10	5	15(5L), 20 10 3	10	15(5V), 20 10 3	15(5V), 20 10	15(5V), 20 10 50 50	3 1	5(5V), 20 10	50 3	Switch Power/W
120 250	150	150 120	150 120 200	150 120 150 75 100	200 150	170 150 100 150 120	150	150 120 250	120 140	150 120 200	170 150	150 120 150 75 100	200 150	170 150	100 220	Max Initial Contact Resistance/mΩ
	2.5 x 10E8	10E9	10E9 10E8	10E9 10E8 10E9	10E8	10E9 10E9	2.5 x 10E8	10E9 10E8	10E9	10E9 10E8	10E9	10E9 10E8 10E9	10E8	10E9	10E8	Min Load Life
10E7 10E7	10E7	10E8	10E8 10E7	10E8 10E7 10E8	10E7	10E8 10E8	10E7	10E8 10E7	10E8	10E8 10E7	10E8	10E8 10E7 10E8	10E7	10E8	10E7	Typical Expectancy/ operations
10E6 10E6 0.5 1	10E6 0.5	10E7 0.5	10E7 10E6	10E7 10E6 10E7 0.5 0.75 1.5 1.5	10E6	10E7 10E7 0.5 1.5 0.5	10E6	10E7 10E6	10E7	<u> </u>	10E7	10E7 10E6 10E7 0.5 0.75 2	10E6	10E7	10E6	Max Load
0.2 0.2	0.5	0.5	0.5 1	0.2 0.5 1 1		0.5 1.5 0.5 0.2 1 0.2	0.5	0.5 0.75 0.2 0.5	0.5	0.5 1 0.2 0.5	0.5	0.5 0.75 2 0.2 0.25 1.25	0.5	0.5	2 1 1.25 0.5	Operate Time/ms Release Time/ms
0.2 0.2 10E12 Ω 10E10 Ω	0.2 10E12 Ω	0.2 10E12 Ω	0.2 0.3 10E12 Ω 10E10 Ω	10Ε12 Ω 10Ε11 Ω		0.2 1 0.2 10E12 Ω 10E11 Ω 10E12 Ω	10E12 Ω	0.2 0.3 10E12 Ω 10E11 Ω	10E12 Ω	10E12 Ω 10E10 Ω		10Ε12 Ω 10Ε11 Ω	10E10 Ω	10E12 Ω	1.25 0.5 10E11 Ω	Insulation Resistance/ Ω
	200	- 250	- 500 -	- 500			200	- <u>330</u> 100		- 330 -					- 200	3V/Ω
500 150 150	400	500 (1000 for high sensitivity version)	500	500 140	500 1000	500 100 150	500	500 (1000 for high sensitivity version)	750 375	500	375	500 140	500 1000	500 500	100 375	5V/Ω Coil
650 – –	_	1000	1000	1000 500	1000 3000	1000 375 – –	_		- 750	1000	1000	1000 500	1000 3000	1000 1000	375 1000	12V/Ω Resistance
	-			3000 1500	3000 3000	3000 1000	_					3000 1500	3000 3000		1000 2700	24V/Ω
						· · · · · · · · · · · · · · · · · · ·										

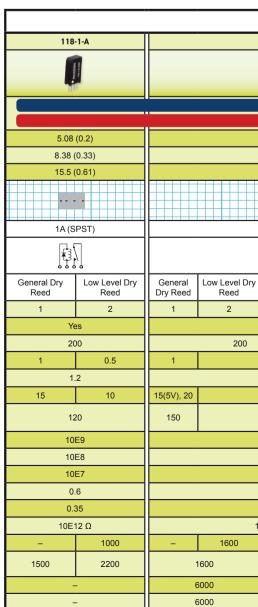
			High Switching Dower											
Application			High Switching Power											
Series Name		114-1-A	114-2-A	114-1-B										
Physical Outline	9	And the second second												
Feetunee		Highest	Quality Instrumentation Grade Reed Swit	tches										
Features			High Power											
	Depth		6.3 (0.245)											
Dimensions mm (inches)	Width	24.1 (0.95)	29.0 (1	.14)										
	Height	8.2 (0.32)	12.5 (0	.49)										
Footprint (0.1 ir	nch grid)													
Contact Configu	iration	1A (SPST)	2A (DPST)	1B (SPNC)										
Switch Schema	tic			آ پیپا آ										
Reed Switch Ty	ре		High Voltage Dry Reed											
Switch Number			1											
Diode Available		Yes												
Switching Volta	ge/V	200Vdc 240Vac (500V max stand off)												
Switching Curre	ent/A		1											
Carry Current/	A		2											
Switch Power/	N		40											
Max Initial Contact Resista	nce/mΩ	150	200)										
Life	Min Load		10E9											
Expectancy/	Typical		10E8											
operations	Max Load	10E7												
Operate Time/r	ns		1											
Release Time/r	ns		0.5											
Insulation Resis	stance/Ω		10E12 Ω											
	3V/Ω	75	-	_										
Coil	5V/Ω	250	150	350										
Resistance	12V/Ω	750	350	1000										
	24V/Ω	2000	1000	2200										

Custo

Pickering manufacture a very wide range of reed relays. If we may be able to adapt an existing relay or design a special part f

- ✓ Variations or enhancement of 🖌 Non-st specifications figures
- 🖌 Special pin configurations or pin lengths 🖌 Specia specif
- \checkmark Special print with customers own part number or logo 🖌 Speci
- 🗸 Custom Packaging
- 🖌 Contro ✓ Equivalents to competitors discontinued ✓ Very let parts

Help with your Custom


For help with your custom requirements go to **pickeringrelay**. If your questions are not answered here please call **+4**4 techsales@pickeringrela

Technical Help

For technical help please go to pickerin If your questions are not answered here please email te

For a free evaluation sample call technical sa

Features SoftConstruction in Mu-Metal Can Depth 3.7 (0.145) 3.7 (0.145) Dimensions mm (inches) Depth 3.7 (0.145) 3.7 (0.145) Width 10.0 (0.39) 15.1 (0.595) Image: Construction in Mu-Metal Can Footprint (0.1 inch grid) 6.6 (0.26) Image: Construction in Mu-Metal Can Contact Configuration 1A (SPST) 1A (SPST) Switch Schematic General Dry General Low Level General Low Level General Low Level	/RF/High S	Coaxial	n Speed E	Digital R	eed Rela	ys						
FeaturesImage: Solution of the section of the	103G-1-A	109RF75-1-A	G-1-A	103G	M-1-A	10	2M-1-A	102	M-1-B			
Sott Construction in Mu-Metal Can Depth 3.7 (0.145) 3.7 (0.145) 3.7 (0.145) Width 10.0 (0.39) 15.1 (0.595) 1 Height 6.6 (0.26) 6.6 (0.26) 6.6 (0.26) Footprint (0.1 Inclassional Contact Configurational Contact Resistance/ Inclassical Contact Configurational Contact Configurational Contact Resistance/ Inclassical Contact Configurational Contact Resistance/ <thinclassical contact="" contact<="" td=""><td></td><td>The second se</td><td>Ç,</td><td></td><td></td><td></td><td></td><td>Į.</td><td></td></thinclassical>		The second se	Ç,					Į.				
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	est Quality Instru		strumentatio		ed Switches	Up to 20W Switching						
Dimensions mm (inches) Width 10.0 (0.39) 15.1 (0.595) Height 6.6 (0.26) 6.6 (0.26) 6.6 (0.26) Footprint (0.1 inches) IA (SPST) IA (SPST) IA (SPST) Contact Configuration 1A (SPST) IA (SPST) IA (SPST) Switch Schematic Image: Contact Configuration Image: Contact Configuration Image: Contact Configuration Image: Contact Configuration Reed Switch Type General Dry Reed General Dry Reed Contact Configuration Image: Contact Configuration Image: Contact Configuration Switch Schematic Image: Contact Configuration Switch Schematic Image: Contact Configuration Image: Contact Contact Co			4.8 (0			4.8 (0.19)						
Height6.6 (0.26)Footprint (0.1 Inch grid)14 (SPST)Contact Configuration14 (SPST)Switch SchematicSwitch SchematicSewitch TypeSewitch TypeSewitch TypeSwitch Number1111Switch Number11Switch Number1111111111111Switch Number111112112112111211111111111 <td></td> <td></td> <td>19.1 (0</td> <td>,</td> <td></td> <td></td> <td></td> <td>(0.75)</td> <td></td>			19.1 (0	,				(0.75)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			8.1 (0	.32)		7.6 (0.3) 10.2 (0.4)						
Switch SchematicImage: Switch SchematicSwitch SchematicGeneral Dry ReedGeneral Dry ReedDry Reed<												
Switch SchematicImage: Constraint of the sector of the secto	1A (SPST		SPST)	1A (S	SPST)	1A	(SPST)	1B (\$	SPNC)			
Reed Dry Reed			<u>ش</u> ا.									
Diode Available Yes Yes Switching Voltage/V 170 200 Switching Current/A 0.5 1 0.5 1 0.5 Carry Current/A 0.5 1 0.5 1 0.5 Switch Power/W 5 15(5V), 20 10 15(5V), 20 10 Max Initial Contact Resistance/mΩ 150 150 120 150 120 <td< td=""><td></td><td></td><td>Low Level Dry Reed</td><td>General Dry Reed</td><td>Low Level Dry Reed</td><td>General Dry Reed</td><td>Higher Power Dry Reed</td><td>General Dry Reed</td><td>Higher Power Dry Reed</td></td<>			Low Level Dry Reed	General Dry Reed	Low Level Dry Reed	General Dry Reed	Higher Power Dry Reed	General Dry Reed	Higher Power Dry Reed			
Switching Voltage /V 170 200 Switching Current/A 0.5 1 0.5 1 0.5 Carry Current/A 0.5 1 0.5 1.2 10 150 10	1	1 2	2	1	2	1	2	1	2			
Switching Current/A 0.5 1 0.5 1 0.5 Carry Current/A 0.5 1 0.5 1.2 15 10 15 10 15 10 <td< td=""><td></td><td></td><td>Ye</td><td>s</td><td></td><td></td><td>Y</td><td>es</td><td></td></td<>			Ye	s			Y	es				
$\begin{tabular}{ c c c c c c } \hline Carry Current/A & 0.5 & 1.2 \\ \hline Carry Current/A & 0.5 & 1.2 \\ \hline Switch Power/W & 5 & 15(5V), 20 & 10 & 15(5V), 20 & 10 \\ \hline Max Initial Contact Resistance/m & 150 & 150 & 120 & 150 & 120 \\ \hline Max Life Expectancy/ operations & \hline Min Load & 2.5 x 10E8 & 10E9 \\ \hline Min Load & 2.5 x 10E8 & 10E9 \\ \hline Min Load & 2.5 x 10E8 & 10E9 \\ \hline Max Load & 10E6 & 10E7 \\ \hline Operate Time/ms & 0.5 & 0.5 \\ \hline Release Time/ms & 0.2 & 0.2 \\ \hline Insulation Resistance/\Omega & 10E12 \Omega & 10E12 \Omega \\ \hline \end{tabular}$	200		00	2	00		2	00				
Switch Power/W 5 15(5V), 20 10 15(5V), 20 10 Max Initial Contact Resistance/mΩ 150 150 120 150 120 Life Expectancy/ operations Min Load 2.5 x 10E8 10E9 10E9 Max Load 10E7 10E8 10E7 10E8 Operate Time/ms 0.5 0.5 0.5 Release Time/ms 0.2 10E12 Ω 10E12 Ω 10E12 Ω	1	1 0.5	0.5	1	0.5	0.5	1	0.5	1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2		.2	1	.2		1	.2				
Min Load 2.5 x 10E8 120 150 120	15	5V), 20 10	10	15	10	10	20	10	20			
Life Typical 10E7 10E8 poperations Max Load 10E6 10E7 Operate Time/ms 0.5 0.5 0.5 Release Time/ms 0.2 0.2 0.2 Insulation Resistance/Ω 10E12 Ω 10E12 Ω 10E12 Ω	150	150 120	120	150 120		150	150	150	150			
operations Max Load 10E6 10E7 Operate Time/ms 0.5 0.5 0.5 Release Time/ms 0.2 0.2 0.2 Insulation Resistance/Ω 10E12 Ω 10E12 Ω 10E12 Ω	10E9)E9	10)E9		10	E9				
Max Load 10E6 10E7 Operate Time/ms 0.5 0.5 Release Time/ms 0.2 0.2 Insulation Resistance/Ω 10E12 Ω 10E12 Ω	10E8)E8			E8				
Release Time/ms 0.2 0.2 Insulation Resistance/Ω 10E12 Ω 10E12 Ω	10E7)E7			E7				
Insulation Resistance/Ω 10E12 Ω 10E12 Ω	0.5				.5			.5				
	0.2				.2			.2				
3V/Ω – – 200 – –	10E12 Ω			10E	12 Ω	000	10E	12 Ω				
Coil 5V/Ω 180 375			300 500	500	300 500	300 500	- 375	- 1000	- 500			
Resistance									500			
12V/Ω – 600 24V/Ω – – – – – –	1000		1000	1000	1000		1000	1	500			

Reed Relay Finder

					· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	
om Reed Relays				Her	119-1-A		119-2-A
we do not have exactly what you need, we t for you. Some examples are below; standard coil voltages and resistance s al Life testing under customer's fic load conditions fic environmental requirements olled Thermal EMF low capacitance Requirements ay.com/products/custom-reed-relays 44 (0) 1255 428141 or e-mail: lay.com	Specialized Applications, for example, current operated relays Copper plated switcher for RF/HF applications 1 and 2 Form A availant Construction Standard Catalog parts tested to a higher specification. For example, the Series 10 has been modified for applications requiring an increased voltage specification us at sales@p	es ble ble (2-Po relay pino to a disc (2-Po relay pino to a disc (2-Po chan a disc (2-Po disc (2-Po chan a disc (2-Po chan a disc (2-Po chan a disc (2-Po chan a disc (2-Po chan a disc (2-Po chan a disc (2-Po chan a disc (2-Po chan a disc (2-Po chan a disc (2-Po chan a disc (2-Po chan a disc (2-Po disc (2-Po disc) (2-Po disc (2-Po disc) (2-Po disc (2-Po disc (2-Po disc) (2-Po disc (2-Po disc) (2-Po disc) (2-Po disc (2-Po disc) (2-Po disc) (2-Po disc (2-Po disc) (2-Po disc) (2-Po disc (2-Po disc) (2-Po disc) (2-Po disc (2-Po disc) (2-Po (2-Po		1kV Stand	IS.1 (U.595) I.C.2 (U.20) I.C.2 (U.20) I.	3kV Stand Off 3kV Stand Off 10 0 1 1 1 10 10 10 10 0 0	00 7 25 0 0 6 9 6 8 8 8 7 7 5 5 2
101-1-A	101-1-C	101-1-B	101-2-A			100-1-A	
Highest Quality Instrumentation Grade Reed	Switches						High
Direct Drive From CMOS	.29)						
20.1 (0	0.79)						
9.4 (0.37)	1C (SPDT)	1B (SPNC)	12.5 (0.49)			1A (SPST	12.7 (0.5)
							,

												High	Voltage														Application	n
6.	119-1-A		119-2-A	119	9-1-B		104	4-1-A		104	4-1-B		104-2-A		62/63	-1-A	62/	/63-1-B	60/6	5-1-A		60/65-1-B	6	67/6	8-1-A		Series Name	
Her	P			ų							and the second se			1	Particular and an an							Herr D//00-1-A			Physical Outlin	ne		
				Highe	est Quality Instru	mentation G	Grade Reed S	Switches											Robu	t Tungster	Plated Sv	witches					Features	
				¥								High \	/oltage														reatures	
	3.7	7 (0.145)		3.7 (0.145)					6.3 (0.245)						19.05	(0.75)		16.0 (0.63)			12.6 (0.495)			Depth			
15.1	(0.595)	20.1	(0.79)	15.1	(0.595)		24.1	(0.95)				29 (1.14)				63.5	(2.5)			57.	9 (2.28)		58.4 (2.3)			Width	Dimensions mm (inches)	
	6.6 (0.26)		8.9 (0.35)	8.9	(0.35)		8.2	(0.32)		12.5 (0.49)						21.3 (18.0 (0.71)				14.5 (0.57)			Height			
										-				Scaled 50%		•		Scaled 50%			Scaled 50?				Footprint (0.1 i	inch grid)		
	1A (SPST)		2A (DPST)	1B (SPNC)	1B (SPNC)		1A (\$	SPST)		1B (\$	SPNC)		2A (DPST)		1A (SF	PST)	1B ((SPNC)	1A (S	PST)		1B (SPNC)		1A (S	PST)		Contact Configu	juration
					e 1		, îm, î		, È,		Ĩ,								~~~	·	o		Series 6) De	2 3 Cricuit Schematic de la cotonial	Benes 66 C	3 4 Shout Bishematio	Switch Schema	latic
1kV Stand Off	2kV Stand Off	3kV Stand Off	1kV Stand Off	1kV Stand Off	2kV Stand Off	1kV Stand Off	1.5kV Stand Off	Standard Mercury Switch	3kV Stand Off	1kV Stand Off	1.5kV Stand Off	1kV Stand Off	1.5kV Stand Off	Standard Mercury Switch	5kV 10k Stand Star Off Off	nd Stand	5kV Stand Off	10kV Stand Off		⟨V 15k∖ nd Stand ff Off	d Stand	d Stand Off	5kV Stand Off	10kV Stand Off	5kV Stand Off	10kV Stand Off	Reed Switch Ty	ýpe
1	2	3	1	1	2	1 (1kV)	2 (1.5kV)	6 (1.5kV)	3 (3kV)	1 (1kV)	2 (1.5kV)	1 (1kV)	2 (1.5kV)	6 (1.5kV)	1 2	3	1	2	1	3	1	2	1	2	1	2	Switch Number	en
		Y	es							Yes						N	0				No			Ye	es		Diode Available	le
		10	00			500	1000	500	1000	500	1000	500	1000	500	3500 750	0 12500	3500	7500	3500 75	00 1250	0 3500	7500	3500	7500	3500	7500	Switching Volta	tage/V
		0	.7			(0.5	2	1	0.5 2				3				3			3			Switching Curr	rent/A			
		1.	25				1	3	1.5			1		3		3			3				3				Carry Current/	./A
		1	0				10	50	25		1	0		50	50						50		_	5	0		Switch Power/	/w
			70			1	50	120	150		2	00		150			20				120			12			Max Initial Contact Resista	tance/mΩ
			E9							10E9						101					10E8				E8		Min Load	Life
	10E8									10E8						10					10E7			10			Typical	Expectancy/ operations
			E7							10E7				1		101					10E6		_		E6		Max Load	
			.5				1	1.5			1			1.5		3					3			3			Operate Time/	
			.2				0.3	1	10540.0	10542.0	0.3	10510.0	10510.0	1		2					2				2		Release Time/	
100	75	10E	12 Ω	50			- -	10E11 Ω _	10E12 Ω	10E12 Ω	10E12 Ω	10E12 Ω	10E12 Ω	10E11 Ω		10E1				10	E12 Ω				12 Ω -		Insulation Resi	Istance/D
250	200	125		100			-	100	220	750 250			50	50	25		50	35 20 35		35			 0		3V/Ω 5V/Ω	-		
750	500	400		400			000	500	500				275	150	75		150			150					12V/Ω	Coil Resistance		
-	_	-	_	_	_		000	1500	3000		000		000	1000	500	350		500	500	200	_	500					24V/Ω	-
										, in the second s										100								

					(Lo	ow Coil F	Power/Lo	ow Therma	l EMF								
		101-1-A			101-1-C	101-1-B		101-2-A				100-1-/	4		100-1-C	100-1-В		100-2-A
	I								1									
	Hi	ighest Quality I	Instrumentation G	irade Reed Switches									Hig	hest Quality Instrum	entation Grade Ree	d Switches		
		D	irect Drive From C	CMOS										Direct Drive From C	MOS - Low Therma	I EMF		
				7.4 (0.29)										10	.2 (0.40)			
				20.1 (0.79)										24	.1 (0.95)			
		9.4 (0.	.37)				12.5	(0.49)					12.7 (0.5)				15.2 (0.	60)
		1A (SPST)			1C (SPDT)	1B (SPNC)		2A (DPST)			1A (SPS	ST)		1C (SPDT)	1B (SPNC)		2A (DPS
													ļ			, tet j		
Dry	Low Level Dry Reed (Special)	High Voltage Switch	Standard Mercury Switch	Position Insensitive Switch	Dry Reed	General Dry Reed	General Dry Reed	Low Level Dry Reed	Standard Mercury Switch	General Dry Reed	Low Level Dry Reed	High Voltage Switch	Standard Mercury Switch	Position Insensitive Switch	Dry Reed	General Dry Reed	General Dry Reed	Low Leve Dry Reed
	17	4	6	8	3	1	1	2	6	1	2	4	6	8	3	1	1	2
				Yes											Yes			
00		400	500	500		200		·	500	20	00		500	500		200		
	0.5		2	2	0.25	1		0.5	2		0.5		2	2	0.25		0.5	
	1.2		3	3		1.2			3		1.2		3	3		1.2		
	10	r	50	50	3	15(5V)	, 20	10	50		10	1	50	50	3		10	[
1	20	150	75	100	200	150	170	150	100	150	120	150	100	120	200	170	200	180
		10E9			10E8		10)E9				10E9			10E8		10E9)
		10E8			10E7		10)E8				10E8			10E7		10E8	;
		10E7			10E6		10)E7				10E7			10E6		10E7	,
	1			1.75	1.25	1		1	1.75		1	1.75		2	1	1	1	1
	0.75			1.75	1		0.75		1.75		1	1.75		2	1	1	1	1
1(DE12 Ω		10	DE11 Ω	10E10 Ω		10E12 Ω		10E11 Ω		10E12 Ω		10	0E11 Ω	10E10 Ω		10E12 Ω	
	-	-	-	-	-	-	-	-	-	-	2000	-	-	-	-	-	-	-
	3000	1600		375	1600	3000	10	000	150	33	00	2200	500	370	3300		2700	
	-	6000		1000	6000	6000		000	650		6800		2000	1000	6800		6000	
	-	6000	:	3000	6000	6000	60	000	2000		6800			3300	6800		6000	

				Application						Surface Mou	nt			Surfac	e Mount l	RF
:		100-2-A		Series Name				200-1-A			200-2-A	200-1-C	200-1-B	200RF	200RF 102F	
			1	Physical Outline	5	,									- 23	
				Features						Highest Qual	ity Instrumentation	Grade Reed Switche	9 5			
				reatures					(Only Surface Mount R	eed Relay Available	with SoftCenter® Co	nstruction			
					Depth	3.9 (0.154)				5.85 (0.23)			4.00 (0.154)	7.6 (0.3)	
		-		Dimensions mm (inches)	Width	15.2	5 (0.6)		20.0 (0.79	9)	15.25 (0.6)	20.0 (0.79)	15.25 (0.6)	15.25 (0.6)	13.5	(0.53)
	15.2 (0.	.60)			Height	6.8	(0.27)		9.0 (0.35)	6.8 (0.27)	9.0 (0.35)	6.8 (0.27)	6.8 (0.27)	4.8 (0.19)
				Contact Configu	iration			1A (SPST	-) 		2A (DPST)	1C (SPDT)	1B (SPNC)	1A (SPST)	1A (S	SPST)
C)		2A (DPST)		Switch Schema	tic										+f	
	General Dry Low Level Standard Reed Dry Reed Mercury Switch			Reed Switch Ty	pe	General Dry Reed	Low Level Dry Reed	High Volt Dry Reed	Standard Mercury Wet Reed	Position Insensitive Mercury Wet Reed	Low Level Dry Reed	Dry Reed	Low Level Dry Reed	Low Level Dry Reed	General Dry Reed	Higher Power Dry Reed
Reed	Reed	Dry Reed	Mercury Switch	Switch Number	Switch Number		2	4	6	8	2	3	2	2	1	2
	1	2	6	Diode Available						Yes					Yes	
				Switching Volta	Switching Voltage/V		200	500			200	200	200	200	2	00
200		-	500	Switching Curr	ent/A	1	0.5	0.5	2	2	0.5	0.25	0.5	0.5	0.5	1
	0.5		2	Carry Current/	Ą	1.2	1.2	1.2	3	3	1.2	1.2	1.2	1.2	1.2	1.2
1.2			3	Switch Power/	N	15	10	10	50	50	10	3	10	10	10	20
	10 200	180	50 150	Max Initial Contact Resista	nce/mΩ	150 120 150		150	75 100		120	200	120	120	1	00
				Life	Min Load				10E9			10E8	10E9	10E9	10)E9
	10E9			Expectancy/	Typical				10E8			10E7	10E8	10E8	10)E8
	10E8			operations	Max Load				10E7			10E6	10E7	10E7	10)E7
	10E7			Operate Time/r	ns	().5	0.5		2	0.5	1	0.5	0.5	0	.5
	1	1	2	Release Time/r	ns	().2	0.2		1.25	0.2	0.5	0.2	0.2	0	.2
	1	1	2	Insulation Resi	stance/Ω		10E12 Ω		1	0E10 Ω	10E12 Ω	10E11 Ω	10E12 Ω	10E12 Ω	10E	12 Ω
-	10E12 Ω		10E11 Ω		3V/Ω	-	250	-	-	-	_	-	-	_	300	-
	- 2700	-	370	Coil	5V/Ω		500		140	140	400	500	750	250	500	375
	6000		1000	Resistance	12V/Ω		1000		500	500	1000	1000	1000	-	1000	1000
	6000		3300		24V/Ω	-	-	-	-	-	-	-	-	-	-	-

pickeringrelay.com

Reed Relay Basics

Reed relays contain a reed switch, a coil for creating a magnetic field, an optional diode for handling back EMF from the coil, a package and a method of connecting to the reed switch and the coil to outside of the package. The reed switch is a simple device and relatively low cost to manufacture.

Reed Switch

The reed switch has two shaped metal blades made of a ferromagnetic material (roughly 50:50 nickel iron) and glass envelope that serves to both hold the metal blades in place and to provide a hermetic seal that prevents any contaminants S Pole entering the critical contact areas inside the glass envelope. Most (but not all) reed switches have open contacts in their normal state.

If a magnetic field is applied along the axis of the reed blades the field is intensified in the reed blades because of their ferromagnetic nature, the open contacts of the reed blades

are attracted to each other and the blades deflect to close the gap. With enough applied field the blades make contact and electrical contact is made.

Inert Gas —

Glass Capsule —

Reed Blade

No Axial Field

Axial Magnetic Field Applied

N Pole S Pole

Contact G

Reed Blad

The only movable part in the reed switch is the deflection of the blades, there are no pivot points or materials trying to slide past each other. The reed switch is considered to have no moving parts, and that means there are no parts that mechanically wear. The contact area is enclosed in a hermetically sealed envelope with inert gasses, or in the case of high voltage switches a vacuum, so the switch area is sealed against external contamination. This gives the reed switch an exceptionally long mechanical life

Ferromagnetic material is not a good conductor and in particular the material does not make a good switch contact, so the reed blades have to have a precious metal cover in the contact area, the precious metal may not stick to the blade material very well so an underlying metal barrier may be required to ensure good adherence. Some types of reed relay use mercury wetted contacts, consequently reed relays that use plated contacts are often referred to as "dry" reed relays. Where the reed blade passes through the glass envelope any plating (in many cases there may be none) requires controlling to avoid adversely affecting the glass to metal hermetic seal. Outside the glass seal the reed blades have to be suitably finished to allow them to be soldered or welded into the reed relay package, usually requiring a different plating finish to that used inside the glass envelope.

The materials used for the precious metal contact areas inside the glass envelope have a significant impact on the reed switch (and therefore the relay) characteristics. Some materials have excellent contact resistance stability; others resist the mechanical erosion that occurs during hot switch events. Commonly used materials are ruthenium, rhodium and iridium– all of which are in the relatively rare platinum precious metal group. Tungsten is often used for high power or high voltage reed switches due to its high melting point. The material for the contact is chosen to best suit the target performance.

Another design variable on the reed switch is its size. Longer switches do not have to deflect the blades as far the reed blades and creating a larger field for a given number of ampere turns in (measured by angle of deflection) as short switches to close a given gap size between the blades. Short reeds the coil. Lower coil operating currents make coil driving simpler and improves other are often made of thinner materials so they deflect more easily but this impacts on their rating and contact area. Smaller reed switches allow smaller relays to be constructed – an important consideration where space is critical. The larger switches may be more mechanically robust and have greater contact area, improving their signal carrying capability.

It is these compromises in reed switch design that gives rise to the vast range of reed relays that are available with both subtle and not so subtle differences in performance.

Generating the magnetic field

To create a relay a magnetic field needs to be created that is capable of closing the reed switch contacts. Reed switches can be used with permanent magnets (for example to detect doors closing) but for reed relays the field is generated by a coil which can have a current passed through in response to a control signal. The coil surrounds the reed switch and generates the axial magnetic field needed to close the reed contacts.

Different reed switches require different levels of magnetic field to close the contact, and this is usually quoted in terms of the ampere turns (AT) – simply the product of the current flowing in the coil multiplied by the number Internal mu-metal magnetic screen of turns. Again this creates a great deal of variation in the reed relay characteristics. Stiffer reed switches for higher power levels or high voltage switches with larger contact gaps, usually require higher AT numbers to operate, so the coils require more power.

Use of different wire gauges for the coil and number of turns creates relays with different drive voltage requirements and different coil powers. The resistance of the wire coil controls the amount of steady state current flowing through the coil and therefore the power the coil consumes when the contacts are closed. Vhenever fine wires are used in Pickering relays, the termination leads from the coils are skeined with severa strands of wire twisted together to increase their physical strength.

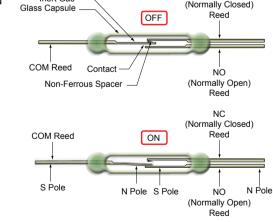
Larger coils can be used to reduce power consumption, but that increases the size of the relay.

A significant factor in some designs is the ability to drive reed relays with standard CMOS logic, requiring that the coil is operated from 5V or 3.3V and that the current (power) requirements in the coil are minimized.

Reed Relay Types

Changeover Reeds

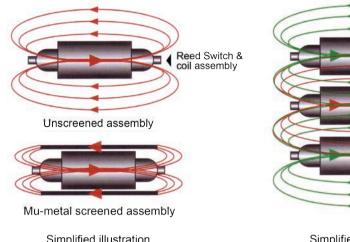
Reed relays can be supplied with changeover switches – the reed switch has a normally closed contact (when no magnetic field is applied) and a normally open contact (which closes when the field is applied). The reed switch closed contact uses the blade as a spring bias with a non ferrous spacer to avoid completing a magnetic circuit. The coil field moves the blade to the normally open contact blade which does not have this spacer. As the reed relay switch blades transition between the two states for a brief period neither contact is closed – and important consideration in some applications.


The normally closed position relies on contact pressure being created by the spring bias of the blade. As well as being much harder to manufacture than normally open reed relays the two contacts, normally closed and normally open, can have quite different characteristics and stability. Experience is generally

that they have a slightly less stable contact resistance than their simpler normally open counterparts. Even so, they perform a useful function for many applications because unlike the use of two normally open reed relays used to create a changeover function they only need one coil drive and it is mechanically not possible to have both contacts closed at the same time.

Two Pole Relays

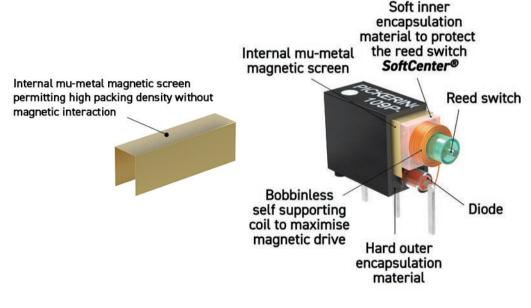
Reed relays can also be supplied as 2 pole relays where two reed switches are contained in the same package and operated by a common coil drive.


It is important to remember that these relays do not have an interlock mechanism between the two, it is unsafe to assume that that the two poles operate at exactly the same time and the two reed switches are essentially independent. There could be an operate time difference of between 50 - 250 microSeconds between them. Failure in one (say a contact weld) will not stop the other contact from moving.

Protection against Magnetic Interaction Contact Plating

Because reed relays are magnetically operated causes a potential problem for users when they are assembled in dense patterns on PCBs

The magnetic field required to close the reed blades flows through the nickel iron reed blades and returns by field lines which are outside the reed relay body. If several relays are placed close together the external field lines can be drawn by the neighboring reed blades and either reinforce of partially cancel the field in the reed, changing the current needed to close or open the contact. This can in some circumstances cause enough effect that the relay may either fail to close or open depending on the magnetic polarity. Some manufacturers suggest arranging the relays in different polarity patterns to mitigate the worst effect of the interaction, but this can become a complex compromise in dense arrays of relays where there are many near neighbors.



Simplified illustration of magnetic fields around screened and unscreened reed switch and coil assemblies

A much more sensible approach is to include a magnetic shield in the reed relay package, an approach used by Pickering Electronics for many years. The user is then free to use a layout pattern that best suits the application. The approach has the added benefit of improving the coil efficiency since it concentrates the magnetic field lines closer to the reed switch body, shortening the magnetic field length outside parameters like thermoelectric emf generation.

Pickering relays use either an internal mu-metal screen inside the plastic package or an external mu-metal can. Mu-metal is used because it has a high permeability at low frequencies and DC. It deflects any external magnetic field around the relay body and the material has a low ability to retain a magnetic field when the coil current is interrupted. Magnetic shields using other materials are generally to be avoided since remanent magnetism can alter the operating point of the relay and create contact variability.

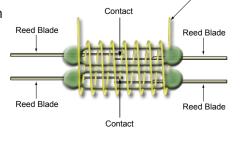
If relays are to be closely packed together then a relay should be chosen with an integrated magnetic shield.

Mercury Reed Relays

There is a class of reed relays that has been historically very popular where the reed contacts include mercury that provides the electrical contact between the blades. The mercury is provided by a small reservoir which blade actuation tends to pump up a grooved surface on the reed blade to the contact area using mercury's high surface tension to retain the material.

Selective chrome plating is often used in the construction since mercury and chrome do not stick together and this is used to help control the mercury.

The glass envelope of mercury relays is also highly pressurised (typically 12 to 14 bar) which helps to manage the switch materials and operation and to improve electrical parameters.


These relays are strongly preferred in some industries because they have a long contact life and bounce free contact closure – a feature that is particularly helpful under hot switch conditions. Stability of low contact resistance during their operational life is considered to be better than that of dry reed relays.

Most types of mercury reed relays are position sensitive – they can only be used in a vertical orientation. Some non position sensitive versions are also available which can be used in any orientation. Mercury wetted relays however are not RoHS compliant and national regulations may limit their use to certain critical applications where exceptions on RoHS have been granted.

High Voltage Reed Relays

High voltage reed relays in addition to having to ensure high clearance distance (including the distance between the contacts in the reed switch) have to have a carefully match operating environment and different contact materials to resist the contact erosion that occur when switching the signals. High voltage reed switches commonly use tungsten or rhodium contacts.

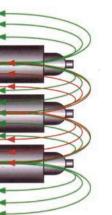
Reed Blade The glass envelope for high voltage reed switches is normally a very hard vacuum to maximise the voltage rating for a given blade separation and to manage arc duration as the contacts open or close. Any loss of seal will rapidly degrade the switch operation so reed switches have to be carefully managed as they are packaged into reed relays.

Relay Terminology

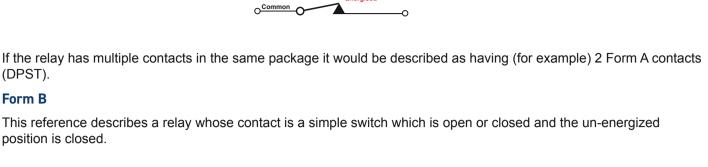
relay with a normally open (NO) contact.

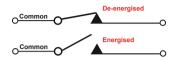
The relay industry has evolved with a set of its own nomenclature that describes the products that are available, not all of these terms are familiar to users. The following section seeks to describe these relay terms.

This reference describes a relay whose contact is a simple switch which is open or closed and the un-energized

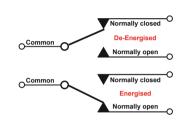

position is the open condition. For a single relay this would also be described as a single pole, single throw (SPST)

Form A

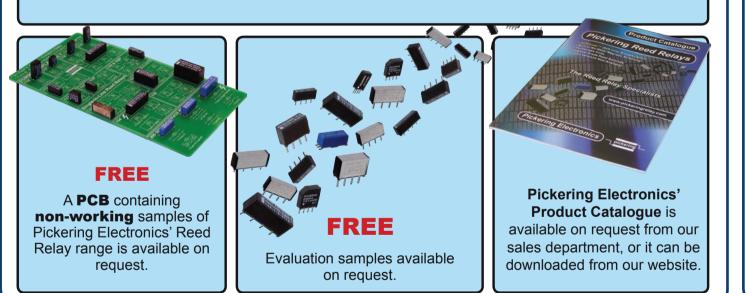

(DPST).


Form B

position is closed.


Simplified illustration showing cancellation of magnetic fields due to adjacent unscreened reed relavs

Form C (Change-over - break-before-make)


This reference describes a relay with two contact positions, the normally closed contact and the contact which becomes closed when the relay is energized. For a single relay this would also be known as a changeover switch or a single pole double throw (SPDT). If the relay has two contacts sets it would be described as 2 Form C contacts, or double pole double throw (DPDT).

Free Literature and Samples

The Reed RelayMate from Pickering Electronics is a publication which looks in detail at reed relays. In it you'll find out how reed relays are constructed, what types there are, how they work, what parameters affect their operation, how to choose the correct relay, a comparison with other relay technologies and how to drive and place reed relay coils.

The Reed RelayMate is available free from the home page of Pickering Electronics' website and is available as printed copy or pdf format.

Choosing a Reed Relay

Signal Voltage, Current and Power Specification All reed relays have specified voltage and current ratings that need to be kept within if the reed relay is to have a long service life. It important to be clear if the application envisages hot switch or cold switching, it can have a substantial impact on the cost and size of the relay used. If hot switching is likely to occur the most common mistake is to ignore the power rating of the reed relay, the fact a particular relay may be capable of 100V and 1A does not mean it can hot switch a signal with these extremes of value. A 10W reed relay for example will only switch a 100V, 100mA signal reliably. If hot switching is not expected to happen then the user can rely on the carry current rating and to withstand the rated voltage across the contacts.

SMD or Thru Hole Mounting

Users often have a choice of using thru hole components or surface mount packages for reed relays.

With other component types the choice may be driven in part by the density that can be achieved on a PCB, however this is not always the case with reed relays. Reed relays are not particularly small devices by modern standards as magnetic interaction can be a real problem on some systems (though not on Pickering Electronics based solutions where the built in magnetic shield prevents problems).

Manufacturing processes may prefer to use SMD components, in which case there are solutions which are available for most applications. However, the choice is more difficult when the relay is considered to be a potential service item. The relay could be considered to be a service item if it is frequently exposed to hot switching events which might wear out the contact materials or where (as is the case in ATE systems) connection to faulty devices or even programming errors can result in the relay being damaged.

Removing surface mounted components is an intrusive procedure – even using specialist de-soldering tools not only the component to be removed but also adjacent components are subject to heating, solder reflow and stress. In these circumstances thru hole components are much easier to manage and require no specialist de-soldering tools or high operator skills. It is more likely the item can be serviced locally, and it is less likely to cause damage elsewhere in the assembly.

For applications where relays may have to be serviced Pickering Electronics recommend that thru hole components are used. Outside of these applications the choice is driven by user manufacturing preferences and the component choices such as footprint area, relay ratings and relay height.

Diode or No Diode

Reed relays often have a choice to include an internal protection diode or not (in comparison this is never the case with EMRs).

The purpose of this diode is sometimes misunderstood, it is present primarily to protect the device that is driving the relay coil from the Back EMF that is generated when the current flow is interrupted.

Assuming the relay coil driver operates with an open collector drive then while the driving device is on the current flow is limited by the resistance of the relay coil. When the open collector is turned off the voltage on the output tries to rise and the current tries to drop, but the open collector drive has no conduction path to allow this to happen. The conducted current has to fall to zero to collapse the magnetic field in the coil. So the driver output voltage rises rapidly, the rate of rise being limited only by characteristics such as coil or driver capacitance. Eventually the voltage rise will limit as the driver output starts to enter voltage breakdown. This is a large impulse load for the driver and may result in premature failure.

Pickering's solution for this is to include a diode to protect the driver, when the driver output rises above the coil supply voltage the diode conducts and clamps the output voltage. As the diode clamp voltage is much less than the breakdown voltage the peak instantaneous energy dissipated is much lower, and a diode is generally designed to better handle this surge than a transistor.

Coil Voltage

Reed relays are supplied with a wide variety of coil voltage options. For logic driving 3.3V and 5V drives are the preferred choice since these voltages are directly compatible with common logic families. However, all the coils for a given reed switch have to have a certain number of Ampere Turns as previously noted, so as coil voltage is dropped the coil current required is increased. For some applications high coil currents are undesirable – they might lead to power loss in power supplies (low voltage supplies are commonly less efficient than higher voltage supplies), losses on PCB traces and the creation of larger EMC transients.

LED drivers can directly support either 5V or 12V coils, open collector drivers can support even higher voltages. However, as coil voltage increases the wire used to create the relay coil becomes finer and harder to wind without breakages. Ultimately this limits the highest voltage coils that can be offered.

For many applications 5V coils are considered a good compromise. One factor often ignored by users is the impact of temperature on coil current. Data sheets for relays will commonly show a nck up voltage and release voltage and this is usually at a significantly lower voltage than the nominal coll voltage requir There are four principal reasons for this margin:

As temperature rises the coil resistance rises (by 0.39% per°C), the voltages are measured at more typical temperatures (25°C), so by the time the maximum rated temperature of the relay is reached the coil current can have dropped very significantly.

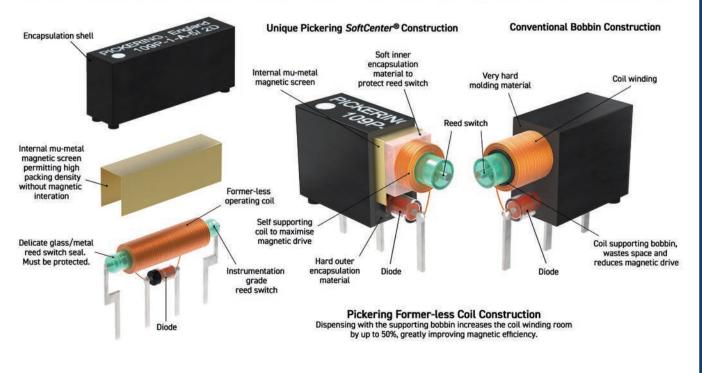
The coil drivers will have an output resistance which may be significant.

Actual power supply voltage can vary both from product to product and across a PCB used to distribute it. External magnetic fields might alter the coil current needed to achieve the required field strength. Consequently reed relays should have a reasonable operating margin to ensure reliable operation in all conditions. The lowest voltage relay coils are the most vulnerable to this type of problem.

Pickering *SoftCenter*® Technology

SoftCenter® Technology

Pickering Reed Relays are encapsulated using a soft inner material to protect the reed switch capsule. The very hard compounds used by most other manufacturers can cause stresses that can potentially damage the reed switch and degrade contact resistance stability and life expectation.


Formerless Coils

Relay operating coils are commonly wound on bobbins. The great majority of Pickering relays are manufactured with self supporting coils, thus avoiding the space required for these bobbins. In the case of the smaller relays types, this gives around 50 percent more room for the coil winding, allowing the use of less sensitive reed switches with their inherent advantages of higher operating and restoring forces. In some ranges, this technique allows Pickering to achieve extremely high coil resistance figures.

Highest Grade Reed Switches

Pickering relays feature the very highest quality 'instrumentation grade' reed switches to meet the exacting demands and long life required of today's equipment manufacturers.

> To learn more about our unique technology visit: pickeringrelay.com/softcenter

Typical Pickering Construction using Former-less Coils and our SoftCenter® technology

Reed Relay Finder

Pickering Electronics

- Highest Quality Instrumentation Grade Reed Switches
- Coaxial/RF/High Speed Digital
- Ultra High Packing Density
- Direct Drive from CMOS
- SoftCenter® Technology
- Up to 50W Switching
- Custom Reed Relays
- Low Thermal EMF
- Low Capacitance
- High Voltage
- High Power

self supporting coil to maximis **SoftCenter**®

The **Reed Relay Finder** is a single sheet reference to Pickering's high quality range of Reed Relays, including their basic specifications.

pickeringrelay.com

Pickering Electronics

Reed Relay Finder

About Pickering Electronics

Pickering Electronics was formed in January 1968 to design and manufacture high quality reed relays, intended principally for use in instrumentation and automatic test equipment.

Today, the UK facility is responsible for Product Development, Technical Back-up, Sales, Marketing and Administration.

Manufacturing is shared between the UK factory and a large modern plant in Trinec, Czech Republic, with strict Quality Control and ISO 2001 certification at both facilities. Pickering Electronics s.r.o. is 100% owned by Pickering Electronics Ltd., England

Pickering Electronics offer an extensive range of high quality instrumentation grade reed relays designed for applications requiring the highest levels of performance and reliability at an affordable price. Through the experience of supporting the most demanding manufacturers of large ATE systems with high relay counts the company has refined its assembly and quality control methods to optimise its manufacturing methods.

Working with its sister company, Pickering Interfaces (pickeringtest.com), Pickering Electronics has developed innovative reed relay solutions designed to provide high coil efficiency, low switch volume and low PCB footprint solutions to meet the demands of modern equipment manufacturers.

SoftCenter® | Highest Grade Reed Switches | Mu-Metal Magnetic Screens | Custom Designs

pickering — Direct Sales & Support Offices

Main contact

UK Headquarters: email: sales@pickeringrelay.com | Tel. +44 1255 428141 Worldwide contacts: USA: email: ussales@pickeringrelay.com | Tel. +1 781 897 1710 Germany: email: desales@pickeringtest.com | Tel. +49 89 125 953 160 China: email: johnson@tomtech.cn | Tel. 0755 8374 5452

For a full list of agents and representatives visit: pickeringrelay.com/agents consequently we reserve the right to vary from the descriptions given in this document.

© Pickering Electronics 2018 – All rights reserved LIT-028 Issue 5

